Respiratory Syncytial Virus (RSV) vaccines

Kim Mulholland
MCRI
RSV

- Discovered in 1956 ("Chimpanzee Coryzal Agent")
- Identified from children with lower respiratory tract infections, especially wheeze
- Dominant paediatric respiratory pathogen in the world
- But no vaccine ... why?
What we know about RSV disease

▶ In infants
 – Acute bronchiolitis (most cases due to RSV)
 – Pneumonia
 – Laryngotracheobronchitis (croup)
 – Causes seasonal epidemics, every winter

▶ Older children and adults
 – Minor ARIs, sometimes with wheeze

▶ Elderly
 – More severe respiratory illness, maybe significant mortality
RSV bronchiolitis

RSV hospitalizations in California 2000-2006

about half with CHD

Severity of bronchiolitis

<table>
<thead>
<tr>
<th>Assessment of the severity of bronchiolitis in infants <12 months Adapted from [41,55]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeding</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Respiratory rate</td>
</tr>
<tr>
<td>Chest wall indrawing</td>
</tr>
<tr>
<td>Nasal flare or grunting</td>
</tr>
<tr>
<td>Sp02</td>
</tr>
<tr>
<td>General behavior</td>
</tr>
</tbody>
</table>
Severe RSV LRTI

An infant or young child presenting to a health facility that is part of the case ascertainment system for the phase III trial who fulfills both the laboratory AND clinical criteria below:

Laboratory criterion
- RSV infection as confirmed by a fit-for-purpose, fully validated PCR assay with high specificity and sufficient sensitivity on upper respiratory samples

Clinical criteria
- Respiratory infection defined as cough or difficulty breathing
- LRTI defined as fast breathing by WHO criteria or \(\text{SpO}_2 < 95\% \)
- \(\geq 1 \) of the following features of severe disease
 - Pulse oximetry < 93%
 - Lower chest wall in-drawing

Very severe RSV LRTI

An infant or young child presenting to a health facility that is part of the case ascertainment system for the phase III trial who fulfills both the laboratory AND clinical criteria below:

Laboratory criterion
- RSV infection as confirmed by a fit-for-purpose, fully validated PCR assay with high specificity and sufficient sensitivity on upper respiratory samples

Clinical criteria
- Respiratory infection defined as cough or difficulty breathing
- LRTI defined as fast breathing by WHO criteria OR \(\text{SpO}_2 < 95\% \)
- \(\geq 1 \) of the following features of very severe disease
 - Pulse oximetry < 90%
 - Inability to feed
 - Failure to respond/unconscious
High risk groups

› Ex-premature infants
 – High risk of severe disease
 – Reasons unclear – poor immunity, narrow airways

› Congenital heart disease
 – Especially those with significant haemodynamic problems

› At RCH over 100 ICU admissions/year
 – ~57% are full term healthy infants
 – Preterm infants have longer respiratory support
RCH DATA

- **p=0.0024 (mann-whitney)**

![Graph 1](Image 1)

- **p=0.004**

![Graph 2](Image 2)
CHD – longer admissions with RSV - California

Immunity to RSV

› Protective
 – High maternal antibody levels
 – Breast feeding

› Natural infection provides some immunity, but…
 – Repeated infections in the same season are quite common

› Vaccination needs to be superior to natural immunity
Formalin Inactivated RSV vaccine

History of FI-RSV Vaccine Enhanced Disease in Clinical Trials

<1966 – Live and inactivated RSV given parenterally without benefit

1966-7 – 4 independent studies using Pfizer lot 100 formalin-inactivated RSV did not protect and caused enhanced disease

>1967 - Live RSV IM, live-attenuated RSV IN given without harm

Subunit F (F+G+M, FG, F+G) and G (BBG2Na) given to adults and children with pre-existing immunity (2-3 fold rise in NT; >10-20 fold rise in ELISA titers)
FI-RSV vaccine – enhanced disease

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>n</th>
<th>Infected (%)</th>
<th>Hospitalized (%)</th>
<th>Deaths**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI- RSV</td>
<td>31</td>
<td>20 (65)</td>
<td>16 (80)</td>
<td>2</td>
</tr>
<tr>
<td>FI-PIV-1</td>
<td>40</td>
<td>21 (53)</td>
<td>1 (5)</td>
<td>0</td>
</tr>
</tbody>
</table>

- Vaccine produced binding antibody, non-functional
- Th2 biased immune response

Kim et al. Am J Epidemiol 1969;89:422
1990s – Two vaccines developed (Wyeth)

› F-protein vaccine
 - Trials in adults, older children
 - Cystic fibrosis patients – less severe disease
 - Pregnant women (Texas) – 35 women recruited
 (Vaccine. 2003 Jul 28;21(24):3465-7)
 - No trials in sero-negative infants

› Live attenuated vaccine
 - Tested in infants
 - Caused URI symptoms
 - Immune responses poor
Palivizumab – monoclonal RSV antibody

› Palivizumab (licensed 2003)
 - an anti-RSV, humanized murine, monoclonal antibody
 - Administered as monthly injections during the season
 - Reduces RSV-admission risk by 45-55% in high risk groups
 - Very expensive – used sparingly in Melbourne

› New generation products
 - Long-lasting – single dose/season
 › Company wants this approved for all US infants
 - Generic products on the way
Vaccine progress – Regulatory position

› Sub-unit vaccines
 – Suitable for adult immunization
 – Suitable for maternal immunization

› Live attenuated vaccines
 – Suitable for infants
RSV proteins
F-protein – Pre and Post Fusion structure

Value as target for potent neutralizing antibody
- Outstanding
- Excellent
- Good
- Poor

Site Ø
Site II
Site IV
Six-helix bundle

Prefusion F
Postfusion F

B Graham, WHO Consultation on RSV Vaccine Development March 23-24, 2015
Current vaccine approaches

› Live attenuated – 5
› Live vectored – 1
› F sub-unit - 7
F Protein vaccines

Postfusion F

<table>
<thead>
<tr>
<th>Developer</th>
<th>Phase</th>
<th>Populations (tested)</th>
<th>Populations (target)</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novavax</td>
<td>2</td>
<td>18-49 y.o., elderly, pregnant women, children 24-71 mos.</td>
<td>elderly, pregnant women, children 24-71 mos.</td>
<td>Alum</td>
</tr>
<tr>
<td>Medimmune</td>
<td>1</td>
<td>elderly</td>
<td>elderly</td>
<td>GLA-Se</td>
</tr>
<tr>
<td>Novartis</td>
<td>1</td>
<td>18-45 y.o.</td>
<td>pregnant women, elderly?</td>
<td>Alum/MF59</td>
</tr>
</tbody>
</table>

Prefusion F

<table>
<thead>
<tr>
<th>Developer</th>
<th>Phase</th>
<th>Population (tested)</th>
<th>Population (target)</th>
<th>Adjuvant</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSK</td>
<td>1</td>
<td>men; women</td>
<td>pregnant women</td>
<td>Alum +/-</td>
</tr>
<tr>
<td>NIH/VRC</td>
<td>Preclinical → 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Novavax – F nano-particle vaccine

- Only vaccine in Phase 3 trials –
 - Adult immunization – protect the elderly
 - Maternal immunization – protection against infant infection

- Adult phase 3 trial results –
 - No efficacy in elderly
 - 28/5892 in vaccine recipients; 26/5917 in placebo recipients

- Maternal immunization study –
 - Trial underway in USA, New Zealand, South Africa, Chile and other sites
 - Plans to use Philippines site (only Asian site)
 - Sample size 8618 over 4 years
 - Endpoint – infant severe LRTI
Live attenuated RSV vaccines

› NIH – RSV LID ΔM2-2

› Modification of the live attenuated RSV vaccine of the 90s:
 - Reduced replication capacity
 - Enhanced expression of F-protein

› Small studies in 29 seronegative US infants
 - No increase in ARI symptoms
 - Modest immune responses
GSK approach

› Maternal vaccine – F protein
› Infant vaccines – Ad vector approach
RSV paediatric vaccine candidate: novel vector approach

ChAd & MVA encoding RSV F, N & M2-1 proteins

Open label dose escalation study in healthy adults (NCT01805921)

Experimental groups
1. PanAd3-RSV IM / MVA-RSV IM
2. PanAd3-RSV IM / PanAd3-RSV IM
3. PanAd3-RSV IN / MVA-RSV IM
4. PanAd3-RSV IN / PanAd3-RSV IM

Doses
PanAd3-RSV: Low 5×10^8 and High 5×10^{10} vp
MVA-RSV: Low 1×10^7 and High 1×10^8 pfu

10 volunteers/group
(2 & 8 volunteers at low & high dose)

The vaccine candidates were well tolerated & immunogenic
Fig. 2. RSV vaccine clinical development pathway for pregnant women.
RSV vaccines offer the prospect of a major impact on:
- Infant bronchiolitis
- Long term complications – asthma, COAD?
- Health systems
- Severe disease in the elderly

Over the next 5 years several will enter phase 3 trials – both maternal and infant